THEORIA, PRAXIS, POIESIS: A CONTINUUM SCHEME.

Ayla Ayyıldız Potur and Kutlu Sevinç Kayıhan

Abstract
The present age provides that the new production technologies are in a continuous experimental production in terms of both quantitative and rapidness criteria. Thinking and testing speed comes closer with these experiences. Knowledge management systems begin to be more important when knowledge and experience generated in the virtual environment with the increased processing of information exceeds the individual's processing capacity. The continuous transformation process with new technologies, organizational models and cross-distance communication, installs a variety of responsibilities to both academic and professional environment. In this study, based on Aristotle's fundamental “theory” (theoria), “practice” (praxis), “poetik” (poiesis), parser for disciplinary point of view will be discussed related to “thinking”, “doing” and “creating” actions. The different nature of design disciplines in relation to theoretical knowledge, practical knowledge, and creative knowledge will also be discussed.

Keywords
Theoria - praxis – poiesis; learning by doing; continuing education; design education.

Introduction
An obvious difference between the concepts theoria and praxis dates back to Aristotle who was one of the pioneering philosophers of ancient age. In contrast to Plato who does not strictly differentiate between disciplines in theory of ideas he developed on relationships between various forms of knowledge and problematic areas of them, Aristotle suggests disciplines to be defined one by one with an analytical point of view. According to this classification, there are three active disciplines, which are (1) theoria, (2) praxis and (3) poiesis. These disciplines are related to episteme, phronesis and techne. Aristotle explains sciences with three different types of knowledge according to their objects as follows: theoretical knowledge whose purpose is reality, practical knowledge whose purpose is action and poietic knowledge whose purpose is creation. According to Aristotle, the purpose of (1) theoria disciplines is to find the reality. This idea suggests taking phenomenon perceived as a result of experiences, in other words realities as a basis rather than concepts in order to explain the world. The purpose of (2) praxis...
disciplines is to reach rational behavior through acquired, moral competence (phronesis). This field is concerned with concepts loaded with normative values such as morals, justice, virtue and politics and problematics created by these concepts. This state is associated with “behavioral knowledge”. (3) The purpose of poiesis disciplines is the production. Creative disciplines are classified under this group (Ross, 1985, Striker, 2009). It is necessary to evaluate this separating point of view about the disciplines of “theoria”, “praxis” and “poiesis” whose bases date back to Aristotle in relation to actions of “thinking”, “doing” and “creating” in terms of design disciplines (Figure 1).

Figure 1: Three disciplines dating back to Aristotle: Theoria, Praxis, Poiesis. (Source: Authors).

Three Knowledge Fields (Natural Sciences, Human Sciences, Design Disciplines): Aspects of Design Disciplines Differing from Other Science Fields

Natural sciences and human sciences are traditionally accepted as two different fields of knowledge. Natural sciences are concerned with existing beings, situations and events, and articulated as a research process coded with a strict singular methodology for searching and perceiving the existing integration. Human sciences are concerned with searching the things belonging to the physical world in the context of culture and time, and it focuses on human behavior and behavior patterns. While both disciplines show similarity in various purposes, content methods such as questioning the existing, “design disciplines” one of whose main purposes is to “transform” stays out of this scope (Ayiran, 2001). While natural sciences and human sciences focus on “how the objects are”, design disciplines deal with the question of “how they must be”. At this point, design disciplines obviously differ from others with a criterion which can be considered as “superiority”. While the purpose of natural sciences and human sciences is to reach reality, design disciplines aim at revealing the reality directly (March, 1976). This awareness formed just in the recent past caused to give up the approach seeing natural sciences as a universal perfection model and classifying the fields of architecture under natural sciences as a design discipline. Though later than expected, this situation has enabled design disciplines to be accepted as an independent field of knowledge having its own way of thinking, background and form of acquisition beyond being a sub category of natural sciences and
human sciences. In this context, the necessity of the field of architecture to make use of its experience and accumulation constituting its core and dating back to a long history in both theory and practice is inevitable. While the unique structure of architecture, which is in the axis of theory - practice - creativity, is evaluated as a superiority differing it from all of the disciplines, perception of this triple dialectic as contradictory and disconnected formations different from one another, and even conflicting with one another will come to be an extremely inhibitive effort of returning. For that reason, considering Plato’s classification of (1) theoretical knowledge, (2) practical knowledge, (3) creative knowledge (Laertios, 1998), the architecture is obliged to make use of its nature differing for covering all of these three types of knowledge fields well and to be a pioneer.

Interaction of Theoretical Knowledge-Practical Knowledge-Creative Knowledge in Architectural Design Education

According to Goldschmidt (1991, 1998), the action of designing comprises of three phases, which are knowledge, interpretation and expression, and it gains a multi-dimensional structure through the dynamics of relationships between these processes (knowing, interpreting, doing). Architectural design education differs from other disciplines with “representative tools”, as well. The designer must externalize and concretize his or her ideational activities which can be expressed abstractly via visual expression techniques, and convey them by means of representative expression languages (Purcell & Gero, 1998). Formulation of the idea must be ensured via models in the phase of design (Archer, 1984), and the individual could do whatever he or she thinks while conducting the activities of thinking by doing, learning by doing, gaining experience by doing. Schön (1985) explains that the most fundamental feature of architectural education, which makes it different from other disciplines and makes it special, is the process of learning by doing. Schön describes design studio based on simulating real problems and situations and experience of learning by doing as the heart of architectural education programs, and emphasizes that there are many things to be learnt by other disciplines from this liberating teaching method. Cobb (1985) stresses that this education system including theoretical, practical, and creative forms of knowledge interactively has characteristics likely to serve as a model for all the other disciplines in the restructuring process of higher education. It can be observed that this idea of Cobb is supported by also other disciplines than the field of architecture with concrete initiatives in Higher Education World Declarations. The system offered as the sample model in declarations where suggestions were formed for teaching systems of all academic disciplines covering also natural sciences and human sciences shows close similarities with necessities of architectural design education. It is momentously stressed in declarations that the education must be conducted in a student-centered way within the scope of critical thinking and creativity. This orientation teaches individuals how to learn in a similar way to the target of “learning by doing” of architectural design education, and accordingly loading the responsibility of learning on the individual by making him or her active. In this sense, architectural education is responsible for protecting and developing its pioneering
status which can serve as a model for other disciplines via its unique necessities and nature of keeping theoretical, practical, and creative forms of knowledge together (Figure 2).

Relationships between the Academic Environment and the Professional Environment

The phenomenon of architectural design is still unfortunately questioned with conflict between the concepts of theory and practice, although it has its own structure involving all types of knowledge classified as theoretical knowledge, practical knowledge, and creative knowledge as distinct from all of the other natural and human disciplines; types of the problems it deals with differ; it has many teaching methods such as learning via active experience and learning by doing; and it has acquisitions such as communicating via representations. Continuance of the tradition of describing architectural education and the profession of architecture as adverse environments can be considered as one of the greatest problems of the discipline of architecture at the present time, when change and transformation occur in a dizzying speed with the principle of continuance. Malecha (2006) stresses that in case a solution is not found for this problem, the discipline of design accepted as a third field of knowledge in recent past could again turn into a sub branch of human sciences.

A biased approach based on the idea that practical knowledge is acquired in professional environment and theoretical knowledge and is acquired in educational environment; and associating educational environment just with “thinking”, and practical field just with “doing” increases the tension between architectural education and architectural practice (Broadbent, 1995), and breaks a phenomenon which normally must be regarded as a whole involved in one another into pieces. This
separating tendency is considered as “a deep gap”. Even though professionals define the academic environment as theoretical, abstract, and different from real life, academics continue to express the practical field with a formalist and nonintellectual dimension devoid of “meaning”. Cobb (1985) stresses that a dynamic and beneficial interaction supporting one another can be ensured on the condition that both of the fields give up the understanding protective for oneself and negative against the other, and display an attitude showing patience against difficulties via active discussion and self criticism method. For these reasons, it is necessary to ensure continuance via transparent transitions between the academic environment and the professional environment.

Being an Architect in the Studio - Being a Student in the Design Office: Learning by Doing in the University - Continuing Education in the Professional Life

The agenda that is constantly transforming with new technologies, organization model and long-distance communications lays various burdens on the academic field and the professional practice field. This environment brings along questioning the importance of a student becoming an architect in the design studio, an architect becoming a student in the office, learning by doing in the university (Figure 3), and continuing education in a professional working environment. Expression of “being architect in the studio” should not be perceived in a limited context such as the completion of process of architectural design with practice project. In the process of “constant change”, the expression of “being an architect in the studio” refers to search based on “learning by doing” moving away from strict teaching principles of traditional education understandings not allowing transformation and incapable to adapt to the needs of the period, not just based on a correction system and associated with independent design experience. Necessities such as a learner-centered education system, liberating studio environment, precedence of intellectual development, constancy of actions of doing by learning - thinking by doing, process-based approach rather than product-based approach, encouragement of original, exciting and creative thinking required by general nature of the design disciplines setting a model for other disciplines must be adopted as basic responsibilities of the academic environment. In addition to educators, ethical responsibilities of professionals are also influential in the formation of the union of theory, practice, and creativity. According to the statement of Malecha (2006), more competent individuals in the profession have responsibilities at least as much as academics to help the people new to the profession. It is considered as an extremely natural obligation to define the working environments of professionals, realizing construction production process in an environment where continuing education defined as life-long learning is discussed in all living spaces, as “learning organizations”. At the present time when the change is directive, the environment for “life long learning” must be provided since the theory moves away from being just a language peculiar to academics and starts to show its face in the practice fields and new fields of knowledge come into being.
Conclusion

All in all, the traditional separating viewpoint causing architectural education and the profession of architecture to be defined as different from one another, unrelated to one another and even as environments adverse to one another, and causing professional practice to be associated with just the concept of “practice”, and academic education to be associated with just the concept of “theory” must go through “radical transformations” also with the contribution of “creativity”. Considering the relationship between two environments as a whole involved in one another rather than examining it as separated pieces must be given priority. At the present time when the phenomenon of “change” is an important key...
word, it is necessary to give up the biased approach turning the relationship between architectural education and professional environment into a tension, causing the educational environment to be associated with just “thinking”, and practical field to be associated with just “doing”. Both of the environments must be in tendency of searching and questioning for accepting and improving deficient and failing aspects in their operation; and they must be consistent in the matter of ensuring the union of “being an architect in the studio and being a student in the office” without ignoring the phenomenon of creativity. Considering the reality of unreachable speed of change, the task of ensuring union of theory, practice, and creativity with academics and professionals via a constant and interactive dialectic instead of separating and contradictory tendencies must be adopted.

References

Ayla Ayyıldız Potur

Ayla Ayyıldız Potur, Ph.D. 2007, is an Assistant Professor in Faculty of Architecture at Gebze Institute of Technology. She received a B.Arch degree from Yildiz Technical University, a M.S Degree from Istanbul Technical University, a PhD. degree from Yildiz Technical University. As well as academic career, she worked in the field of professional practice. As a faculty member, she is currently lecturing design studio along with a variety of undergraduate and graduate theoretical courses focusing on the topic of design and psychology. Her research interests are focused on architectural education, environmental perception, spatial cognition, psychology of design and creative thinking. Her studies have been published widely in these areas. She can be reached by email at ayalaayyildizpotur@gyte.edu.tr.

Kutlu Sevinç Kayihan

Completed undergraduate education at Anadolu University Faculty of Engineering and Architecture and received Master's degree from studies at Gebze Institute of Technology Faculty of Architecture and PhD degree from Yildiz Technical University Faculty of Architecture. Working as an Assistant Professor at Gebze Institute of Technology, Faculty of Architecture, Department of Architecture since 1996. Has a variety of national and international scientific
studies published on the topics of sustainable design and architecture and educational facilities design and teaches undergraduate and graduate courses on same topics.