Great Programs in Architecture: Rankings, Performance Assessments, and Diverse Paths to Prominence

Ann Forsyth

Abstract
What makes a great program in architecture? This paper grapples with a key dilemma faced by architecture programs seeking to be recognized on campus and among their peers. How do schools position themselves to be perceived as programs valued by their universities, faculties, and students, distinguished in ways that represent important dimensions of architecture? The paper first explains how success or performance is currently measured in various ranking and assessment exercises: via reputational surveys; employer reviews; publication and citation counts; complex assessment rankings; and multiple, uncombined performance measures. It then outlines diverse paths or definitions of what it means to be a top or prominent program: elite design; practical readiness; technological sophistication; other substantive or pedagogical niches; and research.

This paper argues there are multiple ways in which architecture can be practiced and thus diverse paths to prominence but at present ranking schemes reflect only a narrow range of practice. To take advantage of current ranking schemes, or provide real alternatives, requires institutional activity, however. Individual schools already promote their interests on their web sites and in academic guidebooks but such self representations do not have the appeal to students and university administrators that comparative rankings present. Alternative assessments need to be created such as in the multiple performance measure approach—an approach that allows comparisons among schools but on many dimensions. Merely creating indicators of achievement does not create or improve excellence, of course. However, such measures could provide students with better information for selecting programs, help programs argue for both their worth and their need for resources, and, most importantly, enlarge debates about architectural excellence and the future of the profession.

Keywords: Education; architecture; ranking.

Great Programs in Architecture: Rankings, Performance Assessments, and Diverse Paths to Prominence

What makes a great program in architecture? As higher education becomes more expensive, it is increasingly coming under scrutiny from students, legislatures, professional groups, and donors. In the struggle for students, funding, faculty, and attention, successful programs are rewarded by their universities, but those that are not successful in terms of campus norms or the
needs for professional workers risk cutbacks and may even be eliminated. This paper grapples with a key dilemma faced by architecture programs seeking to be recognized on campus and among their peers. How do schools position themselves to be perceived as programs valued by their universities, faculties, and students, distinguished in ways that represent important dimensions of architecture?

The paper first explains how success or performance is currently measured in various ranking and assessment exercises: via reputational surveys; employer reviews; publication and citation counts; complex assessment rankings; and multiple, uncombined performance measures. It then outlines diverse paths or definitions of what it means to be a top or prominent program: elite design; practical readiness; technological sophistication; other substantive or pedagogical niches such as sustainability or community design; and research. Several problems prevent schools from becoming leading programs, from a lack of critical mass to a sense that elite design is the only possible path. This paper argues there are multiple ways in which architecture can be practiced and thus diverse paths to prominence but at present ranking schemes reflect only a narrow range of practice. Alternative assessment and performance measures could provide students with better information for selecting programs, help programs argue for both their worth and their need for resources, and, most importantly, enlarge debates about architectural excellence and the future of the profession.

**Measures of Success**

In the market for students, faculty, and funding, rankings count, and a number of methods have emerged to deal with this demand for assessment and measurement of program quality and character. Energy for assessments has generally come from organizations outside of the academy; it is those organizations that have determined ranking format. In the U.S. this has been dominated by private publications like Design Intelligence (2007). In much of the rest of the world where universities are publicly funded, governments have taken the lead in demanding assessments of university program productivity and quality with systems in place in countries as diverse as Australia, Canada, Belgium, Hong Kong, Ireland, New Zealand, the Netherlands, Poland, Slovakia, Taiwan, and the United Kingdom (Geuna and Martin, 2003; von Tunzelman and Mbula, 2003; Stiftel et al., 2008). International rankings of universities such as those by the Times Higher Education Supplement (2008) and the Institute of Higher Education at Shanghai Jiao Tong University (2008) provide comparisons without the fine grain of program assessments but with a wider geography. While academics may not like rankings, such comparative measures are responding to demand by students, universities, funding bodies, and employers.

With the growth of the internet, such rankings have not diminished in numbers; indeed most are products of the internet age. Certainly schools can use their own web sites to promote their programs more directly and students turn to chat rooms to exchange commentary. Organizations such as the U.S.-based Association of Collegiate Schools of Architecture periodically
produce guidebooks although as of 2008 the most recent version was five years old (ACSA, 2003). However, rankings provide an important ability to compare programs. Schools that do well in such rankings promote them on their web sites and students discuss them in their online conversations. University administrators turn to them when comparing architecture with other disciplines. Such rankings, and related performance measurement systems, are unavoidable. The following section outlines the current approaches to undertaking them (see also table 1).

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reputational surveys</td>
<td>U.S. News and World Report; Design Intelligence Deans and Directors survey</td>
<td>Akin to faculty advice</td>
<td>Favor institutional prestige over program achievements; can favor faculty prominence rather than program excellence</td>
</tr>
<tr>
<td>Employer assessments</td>
<td>Design Intelligence main ranking; New Urban News employer survey</td>
<td>Reflects experience of a key constituency</td>
<td>Tends to focus on particular sub-sets of employers e.g. large firms; may be based on experience with relatively few students</td>
</tr>
<tr>
<td>Publication and citation counts</td>
<td>Rarely used (Von Tunzelman and MBula (2003) cite Flanders as an example)</td>
<td>Easily quantifiable using existing databases</td>
<td>Does not reflect many of the core outputs of architecture academics</td>
</tr>
<tr>
<td>Complex ranking measures</td>
<td>Research Assessment Exercise in the United Kingdom includes panel assessment of research quality as well as other measures; Guardian university guide scores</td>
<td>Multi-faceted and in many cases linked to disciplinary priorities</td>
<td>Cumbersome and expensive; if done across fields, architecture can seem less productive than some of the sciences</td>
</tr>
<tr>
<td>Uncombined performance measures</td>
<td>Proposed planning performance measures in the United States</td>
<td>Allows schools to find data that can tell their specific story e.g. of teaching excellence, community outreach, or a need for more funds</td>
<td>Less likely to be done by the private sector—needs a sponsor. May not satisfy demand for ranking</td>
</tr>
</tbody>
</table>

Table 1: Comparison of Ranking and Performance Assessment Approaches. (Sources: see the following sections).
**Reputational rankings:** When U.S. News and World Report provided rankings of architecture programs in the 1990s, they did so based on a survey of academics about program reputations. The recent survey of deans and directors printed on one page of the Design Intelligence employer survey report, is a return to this method (Design Intelligence, 2007: 11). The Planetizen ranking of planning programs, started in 2006, uses a reputational survey as a major component of their assessment (Urban Insight, 2006). This is an important type of measure, but research in the social sciences has found that it tends to provide outdated results that favor institutions with strong reputations irrespective of departmental achievement (Lowry and Silver, 1996; Keith et al, 1998; Cary, 2006). Lombardi et al., authors of a research ranking based on quantitative indicators, provide a critique of such approaches:

Prestige is a form of name-brand recognition derived from historical visibility, from promotional campaigns that project institutional identity, and from the halo effect of real accomplishments.... Prestige, or reputation, also reflects past behavior and publicity more than current performance, and its unreliability severely limits the validity of rankings that use reputation as an indicator. (Lombardi et al., 2001: 20)

While many are critical of reputational surveys, they are related to the common practice of faculty advising students about program choices. Of course, many faculty members are giving advice about which programs might fit student interests in, for example, community design. Reputational rankings can also take this form, ranking programs within specialties and niches.

**Employer surveys:** Design Intelligence, produced by the Design Futures Council, produces the most prominent ranking of architecture programs in the United States. Based on a survey of employer experiences with graduates it focuses on how well programs are preparing graduates for professional practice (Design Intelligence, 2006: 3; 2007). The rankings report lists the employers participating in the survey and these respondents include major mainstream firms from throughout the U.S. but not, for example, the major new urbanism firm of Duany Plater Zyberk or important nonprofit design firms such as those that belong to the Association for Community Design. New Urban News has recently followed this trend, creating its own ranking of new urbanist-oriented programs (Steuteville, 2006). In the market for students, this was a savvy move by the new urbanists. However, few other specialties have followed.

**Publications and citation counts:** Publications data are easy to collect through computerized databases but in design such data are often incomplete and do not distinguish journal quality. For example, a critique of a proposed urban planning ranking based on the international Institute of Scientific Information (ISI) database pointed out that as well as not including books, a major form of publication in design, the database had very uneven coverage of design periodicals:

The database includes the glossy coffee table magazine Architectural Digest and the professional Landscape Architecture magazine but not the more scholarly Journal of Urban Design or Landscape Research. At a more scholarly level, it includes the Journal of Architectural Education, the journal of the Association of Collegiate Schools of Architecture, but not the Council on Education in Landscape Architecture’s equivalent, Landscape Journal. (Forsyth, 2004, 24).
Publications are also not a key output for design faculty in architecture programs whose work may be better measured through awards and honors. However, such publications data are available and do present important measures of productivity and impact and are much used by university administrators. In addition, there have been significant methodological advances in using these information sources (Stiftel et al., 2004).

Complex assessment measures resulting in a ranking: A number of countries have created complex ranking measures. Stiftel et al. describe the British Research Assessment Exercise for planning, which creates a single overall score that determines funding:

The system undergoes revision in each 5-7 year cycle. In the most recent RAE cycle in 2001, units were graded on a 6-point scale (1-5, and 5*) based on papers published, grants awarded, number of staff (“faculty” in U.S. usage) and of research students, the unit’s research strategy, and measures of esteem including prizes, research roles, and advisory posts…. Most important among the measures is the proportion of papers written by staff whose work is judged to be of “international or national quality” by a disciplinary peer panel who read up to four papers by each staff member at each school… (Stiftel et al., 2005, 5).

In the British RAE exercise of 2001 architectural research was judged by different assessment panels—including built environment and history of art, architecture and design—and received much criticism (Rendell, 2004). In built environment Loughborough University and the University of Salford scored 5*, the top score (HERO, 2001). In history of art, architecture, and design only Courtauld Institute of Art scored 5*. Obviously, however, such assessment measures are very time consuming—the next RAE is in 2008 after a full seven years. However, because they involve a panel assessment they can be tailored toward the scholarly products of different fields.

The RAE is not the only such combined score in the U.K. The Guardian (2008) creates a ranking of university programs, including architecture, from seven components: a teacher score related to seniority and qualifications (15%), entry qualifications of students (20%), spending per student (10%), staff (faculty)/student ratio (20%), value-added measured through the proportion of honors degrees (10%), student destinations in terms of employment or graduate study (17%), and inclusiveness or student diversity in terms of disability, age, and ethnicity (8%). This is certainly complicated and open to debate, and lacks the nuance of the panel-based RAE, but at least the method is clearly stated on the web site.

Multiple uncombined performance measures: In the United States, the National Research Council’s ranking of Ph.D. programs ranked fields with more than 50 doctoral programs using 29 variables related to reputation, students, and faculty (Goldberger et al., 2005). Such ranking schemes can include important measures of design excellence, such as awards. In addition, in its newest stage the NRC, is moving toward multiple measures reported by quartiles rather than a ranking (Stiftel, 2006).

Closer to architecture, the field of urban planning in the United States has attempted, with some controversy, to create a set of 30 performance indicators of dimensions ranging from student diversity to faculty projects, without integrating them into an overall ranking system (Stiftel et al.,
This allows schools to monitor and advertise their performance on the subset of indicators that reflect their values—for example, student professional registration, community engagement activities, or research publications. These kinds of systems do not create an overall ranking but rather many comparisons and are a way of valuing schools that have different missions such as practical preparation or research output.

Paths to Prominence

Although architecture program faculty members sometimes complain about rankings and performance assessments, such assessments of quality have been present as long as faculty and practitioners have been recommending particular programs to prospective students. At a university-level administrators use such assessments to distribute funding—using them to assess quality and identify areas needing investment. A fairly qualitative evaluation of rankings and evaluative talk about programs reveals five different dimensions on which schools tend to be ranked or rated (although one of these dimensions is actually a range of niches).

The first two dimensions are currently the most visible and dominate discussions.

Elite design: In architectural practice, particularly in high style areas, who you know matters. Some schools have built up elite connections—their faculties include significant numbers of well-known practitioners as well as many energetic designers in adjunct and limited-term appointments. The stars in these schools are mostly from practice; although these schools may also have famous traditional academics in areas such as history and theory. Many of the practice stars in such programs lead smaller and mid-sized firms, where academic salaries and contacts can make most difference, although the schools as a whole may prepare students for a variety of practice types, from large corporate offices to solo practice.

In these schools, departments and individual faculty (or their firms) employ public relations companies to manage their image and communications and regularly appear in major newspapers such as the New York Times. In addition, many departments benefit from the halo effect of the larger institution of which they are a part. The typical academic outputs of much of the science side of a university—refereed journal articles—are largely irrelevant to the missions of these schools. In fact a number of the most prominent of these programs are not in universities at all.

This is the kind of program that does well in such reputational rankings as the U.S. News and World Report. The exemplar is Harvard, top ranked in both architecture and landscape architecture in the 2007 Design Intelligence survey of deans and directors.

Practical readiness: Schools doing well in this dimension shine in surveys of employers. Their faculty members are deeply committed to teaching. With fewer practice or research stars, they have a well oiled machine of adjuncts, limited-term faculty, and permanent faculty who are energetic teachers and coordinators. Even though the difficult relationship between architectural practitioners and academics has been well documented, some schools manage to break through this with significant internship
or cooperative education programs (Stevens 1998). These programs are the “surprise” stars of the Design Intelligence rankings. The exemplar is the University of Cincinnati, that year after year is in the top handful of programs in the Design Intelligence survey of employers.

Three more paths to prominence are important but are not currently as visible in mainstream rankings in architecture. However, they have represent approaches to practice that are potentially innovative and important.

Technological sophistication: While technology subjects are taught in all architecture programs, what distinguishes these departments is an emphasis on innovative approaches to using technologies in digital representation, construction techniques, materials, and fabrication. However, because technology is taught in all programs of architecture it is not a niche, as in the next category of excellence, but rather an emphasis. This is an area where architecture faculty and students typically collaborate with engineers and others and play an important role in application and translation. In the United States, Design Intelligence creates top five lists for computer applications and construction methods. The exemplar is MIT. In 2006 and 2007 Design Intelligence ranked MIT number one for computer applications; in 2006 it was number two (behind Cincinnati and tied with Cal Poly St. Louis Obispo) in construction methods.

Niches: Some schools shine in terms of substantive or pedagogical niches or specialties such as new urbanism, community design, environment and behavior, project management, historic preservation, medical facilities, or history and theory. Significant, established, well-integrated joint degree opportunities with fields such as business, planning, and landscape architecture fit this category. These schools appear on specialized lists of where to train in specific areas and emphasize topics that are not taught at all schools.

For example, New Urban News created a ranking of new urbanist architecture programs based on a survey of 50 employers, with “best schools” including “Miami, Notre Dame, Maryland, Michigan, California/Berkeley, and Andrews and University of Pennsylvania (tie for sixth)” (Steuteville, 2006). While only Pennsylvania appears on both this new urbanist top five and the top five of either the bachelors or masters degrees in the Design Intelligence rankings (see below), these schools are the programs of choice for students interested in these niche areas.

However, in comparison with other fields, it is surprising how few architecture programs are known for a specialty and how few interest groups have created any kind of list. Unlike the related area of urban planning that tends to have a handful of specialties in each school, or even landscape architecture that has a range of specialties at different scales and approaches, architecture programs tend to be more generalist (Crewe and Forsyth, 2003). However, there are models for such reviews such as the National Survey of Student Engagement (2007) that surveys over 200,000 students to create with benchmarks including active learning and student-faculty interactions.

Overall, there are numerous important areas of potential architectural innovation from
Great Programs in Architecture: Rankings, Performance Assessments, and Diverse Paths to Prominence

Sustainable design to community process and adaptive reuse. These are specialties that could provide important solutions to crucial global concerns. While rankings may rankle, a lack of surveys or comparative data makes these key areas less visible to potential students and university administrators. The area that has managed to achieve visibility is new urbanism and within this niche the University of Miami is an exemplar.

**Research:** Although not very common for architecture programs, it is possible for schools to do well in research, particularly those schools emphasizing history, technology, or other “support” areas (Forsyth and Crewe, 2006). However, this kind of research ranking is largely of interest in universities and is not much valued by the profession of architecture. Independent sociologist Garry Stevens has ranked school research productivity by (roughly) publications per academic, with improved methods in 2007 (Stevens, 2007). Columbia, Princeton, Cooper Union, Harvard, Penn, Berkeley, Rice, and Yale come out at the top using this approach. Design Intelligence also ranks a top five schools on research and theory as judged by employers. The British RAE exercise and related programs in other countries are further examples.

As universities value research more, and as architecture struggles to be more relevant in issues beyond general design, there may be increasing pressure for architecture programs to have at least some of their faculty performing well in research. Research collaborations in the broad areas of health, sustainability, and urban issues seem particularly promising for architecture programs and for the larger profession (Forsyth, 2007a; 2007b).

Schools that do well on one of these dimensions may also do well on another. The following table lists in alphabetical order the schools with the top five graduate and undergraduate programs in the Design Intelligence ranking in 2006 and 2007. (Because of some movement in the rankings, 15 schools are listed.) It classifies them into the five dimensions. As the table shows, some programs have more than one specialty—for example, schools that do well in technology and also in elite design. However, the Design Intelligence ranking reflects a bias toward practical readiness and elite schools, with few on the list below reflecting niche areas or even technology. This is a problem with current rankings that tend to ask major firms (Design Intelligence) or general groups of academics (the old U.S. News and World Report ranking or the new Design Intelligence deans and director survey) about general preparation. Research assessments have different biases. There is a real need for students to be able to find information leading them to schools excellent at training in specialized areas such as participatory design or sustainable building materials, and there is little guidance.

<table>
<thead>
<tr>
<th>School</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal Poly San Luis Obispo</td>
<td>Practical</td>
</tr>
<tr>
<td>Columbia University</td>
<td>Elite</td>
</tr>
<tr>
<td>Kansas State University</td>
<td>Practical</td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td>Elite</td>
</tr>
<tr>
<td>University of Texas at Austin</td>
<td>Elite/practical</td>
</tr>
<tr>
<td>Cornell University</td>
<td>Elite</td>
</tr>
<tr>
<td>Harvard University</td>
<td>Elite</td>
</tr>
<tr>
<td>MIT</td>
<td>Elite/technology</td>
</tr>
<tr>
<td>Rhode Island School of Design</td>
<td>Elite/niche</td>
</tr>
<tr>
<td>Rice</td>
<td>Elite</td>
</tr>
<tr>
<td>Syracuse</td>
<td>Practical</td>
</tr>
<tr>
<td>University of Cincinnati</td>
<td>Practical</td>
</tr>
</tbody>
</table>
Conclusions

Architecture programs are under external pressure to perform better—in research, teaching, and in overall reputation in the field—but there are many barriers. Although there are several paths to distinction, some schools don’t succeed or achieve visibility at any one of them—even a niche area. Why? There seem to be two sets of answers, some to do with school performance and others to do with the ways schools perceive the field.

In terms of performance in the current key areas of rankings in the United States—elite prestige, practical training, and technology—both internal and external reasons can prevent schools standing out. These include a lack of critical mass of energetic faculty, real issues of workload, problems with funding, and nepotism due to a reliance on local practitioners as adjuncts. A few programs mistake harmony for excellence. Reputational surveys privilege schools with a strong past or visible current leadership. Certainly some of these barriers are real and difficult to overcome, and others more malleable.

However, for those able to generate a critical mass, there are many opportunities to create great programs that provide real options in architectural education. Perhaps the biggest conceptual barrier in the U.S. is seeing elite design, and perhaps general practical training, as the only paths to excellence. In Britain, research could well become an important factor due to the situation that the RAE links funding to performance, although this is going against the grain of architectural education. If schools could try to position themselves in niche areas of practice, technology, or research, however, architectural education could be enriched and students would have more options. In fact the current mainstream “best schools” in the U.S. are really niches of a particular kind—elite design or practical preparation for large firms. There is surely more to architecture than this.

To provide viable options in the face of the current rankings schemes requires institutional activity, however. Individual schools already promote their interests on their web sites and in academic guidebooks but such self representations do not have the appeal to students and university administrators of rankings. While reputational rankings and employer surveys are unlikely to go away, alternative approaches to comparison need to be created such as in the multiple performance measure approach. This measurement approach allows schools to be compared on many dimensions, not just a few. One could imagine data collection efforts focused on numbers of low-income housing units designed and built in architecture programs, students graduating from dual degrees, awards for sustainable design projects, or student diversity. A survey along the lines of the National Survey of Student Engagement could compare schools in terms of active learning, enriching experiences, and campus environment (NSSE, 2007). One can imagine dozens of measures from student placements to faculty research that could reflect a growing appreciation of the diversity of architectural education and practice.
Developing such indicators could draw on the growing international experience in academic performance measurement—in terms of the strengths and weaknesses of current approaches. What kinds of information are useful in improving program quality? How can such measurements be used to highlight less visible design specialties such as affordable housing or low-cost construction techniques? Which assessment approaches actually help programs and which focus attention on unimportant issues while creating a reporting burden to schools and the profession? Performance measurement is a growth industry and too little attention has been focused on it from the perspective of design—much more needs to be known.

Of course, merely creating indicators of achievement does not create or improve excellence. However, such measures could provide students with better information for selecting programs, help programs argue for both their worth and their need for resources, and enlarge debates about architectural excellence and the future of the profession.

Overall, there are many niche areas where there will be increasing demand for designers—from energy efficient architecture to socially-responsive design. There are many areas where architects can make a contribution to society and also make a living. The current group of rankings focuses on only a few of these areas with negative implications for schools outside those areas of elite design and practical readiness. If schools can highlight and achieve excellence in a wider number of specialty fields they will be able to both distinguish themselves on campuses and among students and make a contribution to practice.

**Notes**

In 2005, I was asked to join a campus-wide task force with the mission of understanding how to support innovative work that could change disciplines, both from within each field and through interdisciplinary work. This paper reflects those experiences. Thanks also to Bruce Stiftel, Fritz Steiner, Peter Brown, and Katherine Crewe for important critiques of the draft paper.

**References**


of Architectural and Planning Research, 23 (2), pp.160-175.


--------------------

Ann Forsyth

Ann Forsyth is professor of city and regional planning at Cornell University with research and practice examining how to create sustainable and healthy urban places, focusing on some of the trickiest issues: affordable housing, social diversity, green space, and walkability. She has held tenured positions in architecture and landscape architecture. Trained in planning and architecture, Ann Forsyth’s work focuses on the social aspects of physical planning and urban development. The big question behind her research and practice is how to make more sustainable and healthy cities. She was director of the Metropolitan Design Center at the University of Minnesota and professor of urban design with appointments in both the architecture and landscape architecture departments. Forsyth is author of three books: Reforming Suburbia: The Planned Communities of Irvine, Columbia, and The Woodlands (2005, University of California Press); Designing Small Parks: A Manual Addressing Social and Ecological Concerns (2005, Wiley, with Laura Musacchio); and Constructing Suburbs: Competing Voices in a Debate Over Urban Growth (1999, Routledge/Gordon and Breach). Ann can be contacted by email at af16@cornell.edu